Thermal-shock-proff Inclinometer

Thermal-shock-proof I nclinometer

Features

- Withstand $1200^{\circ} \mathrm{C}$ thermal shock within 5 minutes
- Special cable protective cover
- IP65 protection grades
- High resolution \& accuracy\& stability
- Particular high temperature material, structure designX sensitive axis maı

Descriptions

The thermal-shock - proof inclinometer based on high performance/reliability/stability inclinometer, especially designed from shell material, connector, insulation, cable protection etc, with finite element (FEA) analysis tool, it is a professional tilt angle measuring products in highest temperature environment .

Applications

Electric power, chemical, metallurgy and other industries such as high-temperature region Metallurgical heating treatment equipment, high-temperature fluid pipeline equipment Missile launch vehicles, launchers, aircraft carriers and other military equipment exposed to high-temperature region

Dimensions (mm)

Wiring
Table 2 RS 232 pin definition

Cable wire color	Function
Red	Power+
Black	Power GND
Green	Signal GND
Yellow	NC
White	NC
Blue	RS232-TXD
Brown	RS232-RXD

Performances
Table 1 Specifications

Range		$\pm 5^{\circ}$	$\pm 10^{\circ}$	$\pm 15^{\circ}$	$\pm 30^{\circ}$	$\pm 45^{\circ}$	$\pm 60^{\circ}$
Combined absolute accuracy ${ }^{\circledR}\left(@ 25^{\circ} \mathrm{C}\right)$)		$\pm 0.01^{\circ}$	$\pm 0.015^{\circ}$	$\pm 0.02^{\circ}$	$\pm 0.04{ }^{\circ}$	$\pm 0.06{ }^{\circ}$	$\pm 0.08^{\circ}$
Accuracy subroutine parameter	Absolute linearity (LSF, \% FS)	± 0.06	± 0.03	± 0.03	± 0.03	± 0.02	± 0.02
	Cross-axis sensitivity ${ }^{(2)}$	$\pm 0.1 \%$ FS					
	Offset ${ }^{3}$	$\pm 0.005^{\circ}$				$\pm 0.008^{\circ}$	
	Repeatability	$\pm 0.0025^{\circ}$					
	Hysteresis	$\pm 0.0025^{\circ}$					
Allowed installation misalignment ${ }^{(4}$		$\pm 4.0^{\circ}$	$\pm 3.0^{\circ}$	$\pm 2.5^{\circ}$	$\pm 1.5^{\circ}$	$\pm 1.2^{\circ}$	$\pm 1.2^{\circ}$
Input-axis mislignment		$\leq \pm 0.1^{\circ}$					
Sensitivity coef	temperature drift cient(max.)	$\leq 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\leq 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$				
Offset t coef	mperature drift cient(max.)	$\leq 0.003{ }^{\circ}{ }^{\circ} \mathrm{C}$					
Offset turn	on repeatability ${ }^{\text {® }}$	$\pm 0.008^{\circ}$					
Resolution		0.0025°					
Long-term	stability(1 year)	$\leq 0.02^{\circ}$					
Meas	rement axis	1 or 2 axis					
Tempe	rature sensor	Range: $-50 \sim 125^{\circ} \mathrm{C}$, Accuracy: $\pm 1^{\circ} \mathrm{C}$					
	Output	RS232, RS485, RS422, CAN					
RS23	data format	115200 baud, 8 data bit, 1start bit, 1start bit, none parity					
Cold sta	warming time	60s					
Res	onse time	0.3s(@t90)					
	resh rate	$5 \mathrm{~Hz}, 10 \mathrm{~Hz}, 20 \mathrm{~Hz}$					
Respo	se frequency	3 Hz @-3dB					
	er supply	9~36VDC					
Power	consumption	Average working current $\leq 50 \mathrm{~mA}$, average power $\leq 1.5 \mathrm{~W}\left(25^{\circ} \mathrm{C} \& 24 \mathrm{VDC}\right)$)					
Operation temperature range		Long-term working: $-40 \sim 500^{\circ} \mathrm{C}$ $1200^{\circ} \mathrm{C}$ thermal-shock within 5 min .					
Storage te	mperature range	$-60 \sim 100^{\circ} \mathrm{C}$					
	EMC	According to EN 61000					
Insulat	on resistance	$100 \mathrm{M} \Omega$					
	MTBF	$\geq 2500 \mathrm{~h} /$ times					
	Shock	100g@11ms, three-axis, half-sine					
	ibration	8grms, 20~2000Hz					
	otection	IP65(optional IP67)					
	Weight	17 Kg (without connector and cable)					

(1) Combined absolute accuracy means the compositive value of sensor's absolute linearity, repeatability, hysteresis, offset and cross-axis sensitivity error. (in room temperature condition) as
$\Delta= \pm \sqrt{\text { absolute linearity }^{2}+\text { repeatability }^{2}+\text { hysteresis }^{2}+\text { offset }^{2}+\text { cross-axis sensitivity error }^{2}}$
(2) The cross-axis sensitivity means the angle that the tilt sensor may be banked to the normal tilt direction of sensor. The cross-axis sensitivity ($\pm 0.1 \%$ FS) shows how much perpendicular acceleration or inclination is coupled to the inclinometer output signal. For example, for the single-axis inclinometer with range $\pm 30^{\circ}$ (assuming the X -axis as measured tilt direction), when there is a 10° tilt angle perpendicular to the X -axis direction(the actual measuring angle is no change, example as $+8.505^{\circ}$), the output signal will generate additional error for this 10° tilt angle, this error is called as cross-axis sensitivity error. SST300` s cross-axis sensitivity is $0.1 \% \mathrm{FS}$, the extra error is $0.1 \% \times 30^{\circ}=0.03^{\circ}(\mathrm{max})$, then real output angle should be $+\left(8.505^{\circ} \pm 0.03^{\circ}\right)$. In SST 300 series , this error has been combined into the absolute accuracy
(3) Offset means that when no angle input (such as the inclinometer is placed on an absolute level platform), output of sensor is not equal to zero,the actual output value is zero offset value.
(4) Allowed installation misalignment means during the installation, the allow able installation angle deviation between actual tilt direction and sensor's nature measurement direction. In general, when installed,SST300 sensor is required that the measured tilt direction keep parallel or coincident with sensor designated edge, this parameter can be allowed a certain deviation when sensor is installed and does not affect the measurement accuracy.
(5) Offset turn on repeatability means the repeatability of the sensor in repeated by supply power on-off-on many times.

Ordering

SST3

For example, if order a dual axis thermal shock-proof inclinometer, with range $\pm 15^{\circ}$, room temperature accuracy $\pm 0.02^{\circ}$, output RS422, 2 meters cable with plug, the model should be chosen as: SST302-15-G2-00-B1-C15-00

Accessories \& Options

Table 3 Accessories

Item	P/N	Order Code	Accessories name	Function
Output interface	SST003-07-00	00	RS232 output	Directly angle output Data format: Baud rate: 115200(adjustable), 8 data bits, 1 start bit, 1 stop bit, none parity Refresh rate: 5 Hz , optional: $10 \mathrm{~Hz}, 20 \mathrm{~Hz}$
	SST003-07-01	G1	RS485 output	Isolated, Compatible with half-duplex or full-duplex communication; $\pm 15 \mathrm{kV}$ ESD protection Compatible with ANSI/TIA/EIA-485-A-98 \& ISO8482:1987(E)
	SST003-07-02	G2	RS422 output	Transmission rate up to 500 kbps , support max 256pcs node High common mode transient suppression ability $>25 \mathrm{kV} /$ us ; Support Modbus-RTU, sensor supply HEX or ASCII communication
	SST003-07-03	G3	CAN output	Compliance with ISO/DIS 11898, twisted-pair output Support CAN2.0A, CAN2.0B protocol Build-in high-speed photo isolators Support 15 baud rates from $5 k$ to 1000 Kbps Transmission distance: 10km Max

