ELEKTRIK ELEKTRONIK MALZEMELERI SAN．VE TIC．LTD．ȘTi．

GPS Inclinometer

$$
\Leftrightarrow
$$

辉格科技
Vigor Technology

GPS I nclinometer

Features

- Output data: position, speed, PPS clock, X \& Y axis tilt angle
- Level position accuracy: 2.5 m CEP, 2.0 m @ SBAS
- PPS clock accuracy: 30ns RMS
- Speed accuracy: $0.1 \mathrm{~m} / \mathrm{s}$
- Tilt repeatability: $\pm 0.0025^{\circ}$
- Local gravity acceleration value adjust automatically, ensure accurate zero at any place of world

- Radio: GPS L1 band, C/A code, GALILEO Open Services GLONASS FDMA; SBAS:WAAS, EGNOS, MSAS
- Available to API for Google maps

Descriptions

GPS inclinometer is a new attitude measurement product, creatively designed by Vigor. It combines GPS module and unique tilt measurement technology, not only provides roll \& pitch angle data, but also position, time and speed information available. It meets the requirement of that, many sensors work synchronically in static situation, and positioning and synchronization in dynamic situation.
Local latitude \& longitude information are provided by internal GPS module, and the inclinometer can use these to adjust the gravity acceleration value automatically, so as to ensure accurate tilt angle data. Also with the GPS information, end-user can install many sensors in proper places to realize attitude monitoring of mountain or other fields.
GPS inclinometer has added time-stamp on angle data, 30ns accuracy can meet most of data synchronization analysis and acquisition requirements.
For mobile devices, GPS inclinometer not only provides high accurate $X \& Y$ axis angle data, but also the latitude \& longitude data, sea level elevation and moving speed data. If GPS base stations available, it will realize 40 cm positioning accuracy. For more details, please contact Shanghai Vigor.
GPS inclinometer has strong tilt measuring ability:
$\sqrt{ } \pm 0.02 \%$ FS linearity
$\sqrt{ } \pm 0.005^{\circ}$ Offset and local gravity acceleration automatically compensated via GPS latitude \& longitude data, realize high accuracy of zero and wide-range measurement
\checkmark No location limit to GPS inclinometer. Synchronize to each GPS inclinometer and other equipments by GPS clock
$\sqrt{ }$ Further confirmed that offset, repeatability, hysteresis, turn on repeatability etc. parameters which are important influence factors to unit total performance evaluation
\checkmark Internal enhanced advanced intelligent algorithms drastically reduce cross-axis error. upgrade real tilt angle measuring accuracy. Abandoned the traditional incomplete understanding for tilt angle measurement accuracy concept
$\sqrt{ }$ Patent error calculation and test calibration method, greatly upgrades real tilt angle measuring accuracy and reliability
$\sqrt{ }$ Greatly reduce measuring errors when the real tilt direction not consistent to inclinometer sensitive axis
$\sqrt{ }$ Additional to short-circuit, transient voltage, Overheat protection and transposition protection to adapt to industry environment
$\sqrt{ }$ User can set parameters of inclinometer and query factory data

Picture 1 GPS inclinometer in solar energy automatic control application

Applications

Agricultural \& construction machinery, Trucks, Buses, Trains
Other outdoor ground mobile devices
Track inspection instrument, field geological exploration
Instruments and other operation equipment
Field synchronous test system(rely on tilt angle \& PPS clock)
Vessel and other marine equipment
Geological disaster long-term monitoring system

Dimensions (mm)

Picture 2 Housing with MIL class connector

Performances
Table 1 Specifications

Tilt specifications							
Measurement range		$\pm 5^{\circ}$	$\pm 10^{\circ}$	$\pm 15^{\circ}$	$\pm 30^{\circ}$	$\pm 45^{\circ}$	$\pm 60^{\circ}$
Combined absolute accuracy ${ }^{(1}\left(@ 25^{\circ} \mathrm{C}\right)$		$\pm 0.01^{\circ}$	$\pm 0.015^{\circ}$	$\pm 0.02^{\circ}$	$\pm 0.04^{\circ}$	$\pm 0.06^{\circ}$	$\pm 0.08^{\circ}$
Accuracy subroutine parameter	Absolute linearity (LSF, \% FS)	± 0.06	± 0.03	± 0.03	± 0.03	± 0.02	± 0.02
	Cross-axis sensitivity ${ }^{\text {(2) }}$	$\pm 0.1 \%$ FS					
	Offset ${ }^{3}$	$\pm 0.005^{\circ}$			$\pm 0.008^{\circ}$		
	Repeatability	$\pm 0.0025^{\circ}$					
	Hysteresis	$\pm 0.0025^{\circ}$					
Allowed installation misalignment ${ }^{(4)}$		$\pm 4.0^{\circ}$	$\pm 3.0^{\circ}$	$\pm 2.5^{\circ}$	$\pm 1.5^{\circ}$	$\pm 1.2^{\circ}$	$\pm 1.2^{\circ}$
Input-axis mislignment		$\leq \pm 0.1^{\circ}$					
Sensitivity temperature drift coefficient(max.)		$\leq 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\leq 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$				
Offset temperature drift coefficient(max.)		$\leq 0.003{ }^{\circ}{ }^{\circ} \mathrm{C}$					
Offset turn	n repeatability ${ }^{(5)}$	$\pm 0.008^{\circ}$					
Resolution		0.0025°					
Long-term stability(1 year) ${ }^{\text {© }}$		$\leq 0.02^{\circ}$					
Measurement axis		1 or 2 axis					
Cold start warming time		60s					
GPS-specifications							
Level position accuracy		2.5m@CEP/2.0m @ SBAS					
PPS clock accuracy		30ns RMS					
Radio		50 channels, GPS L1 band, C/A code; GALILEO Open Services GLONASS FDMA ; SBAS: WAAS, EGNOS, MSAS					
Speed accuracy		$0.1 \mathrm{~m} / \mathrm{S}$					
Max speed		$500 \mathrm{~m} / \mathrm{S}$					
Cold start warming time		26s					
Warm-start		1 s					
GPS antenna		Active, frequency: $1575 \mathrm{M} \pm 3 \mathrm{MHZ}$, polarity: RHCP, standard length 3 M					
Others							
Output data		Position(longitude and latitude), speed, PPS clock, X \& Y axis tilt angle					
Output interface		CAN, RS232, RS485, RS422					
Refresh rate		$5 \mathrm{~Hz}, 10 \mathrm{~Hz}, 20 \mathrm{~Hz}$					
Power supply		9~36VDC					
Power consumption		Average working current $\leq 50 \mathrm{~mA}$, average power $\leq 1.5 \mathrm{~W}\left(25^{\circ} \mathrm{C} \& 24 \mathrm{VDC}\right)$					
Operation temperature range		$-40 \sim 85^{\circ} \mathrm{C}$					
Storage temperature range		$-60 \sim 100^{\circ} \mathrm{C}$					
Insulation resistance		$100 \mathrm{M} \Omega$					
MTBF		≥ 25000 hours					
Shock		100g@11ms, three-axis, half- sine					
Vibration		8grms, 20~2000Hz					
Protection		IP67					
Connecting		Military class connector(MIL-C-26482)					
Weight		420 g (without connector and cable)					

(1) Combined absolute accuracy means the compositive value of sensor's absolute linearity, repeatability, hysteresis, offset and cross-axis sensitivity error. (in room temperature condition) as
$\Delta= \pm \sqrt{\text { absolute linearity }^{2}+\text { repeatability }{ }^{2}+\text { hysteresis }{ }^{2}+\text { offset }^{2}+\text { cross-axis sensitivity }^{2}}$
(2) The cross-axis sensitivity means the angle that the tilt sensor may be banked to the normal tilt direction of sensor. The cross-axis sensitivity ($\pm 0.1 \%$ FS) shows how much perpendicular acceleration or inclination is coupled to the inclinometer output signal. For example, for the single-axis inclinometer with range $\pm 30^{\circ}$ (assuming the X -axis as measured tilt direction), when there is a 10° tilt angle perpendicular to the X-axis direction(the actual measuring angle is no change, example as $+8.505^{\circ}$), the output signal will generate additional error for this 10° tilt angle, this error is called as cross-axis sensitivity error. SST300` s cross-axis sensitivity is $0.1 \% \mathrm{FS}$, the extra error is $0.1 \% \times 30^{\circ}=0.03^{\circ}(\mathrm{max})$, then real output angle should be $+\left(8.505^{\circ} \pm 0.03^{\circ}\right) . \operatorname{In~} \mathrm{SST} 300$ series, this error has been combined into the absolute accuracy
(3) Offset means that when no angle input (such as the inclinometer is placed on an absolute level platform), output of sensor is not equal to zero,the actual output value is zero offset value.
(4) Allowed installation misalignment means during the installation, the allow able installation angle deviation between actual tilt direction and sensor's nature measurement direction. In general, when installed,SST300 sensor is required that the measured tilt direction keep parallel or coincident with sensor designated edge, this parameter can be allowed a certain deviation when sensor is installed and does not affect the measurement accuracy.
(5) Offset turn on repeatability means the repeatability of the sensor in repeated by supply power on-off-on many times.
(6) Long-term stability means the deviation between the statistics of the maximum and the minimum output value after a year of continuous power supply when the sensor is at $20^{\circ} \mathrm{C}$.

Wiring

Table 2 Pin definition

Picture 3 Connector (View from outside)

PIN	Wi-Fi	CAN	RS232	RS422	RS485
A	Power +				
B	Power GND				
C	Signal GND				
D	NC	CAN-H	NC	RXD +	NC
E	NC	CAN-L	NC	RXD-	NC
F	NC	NC	TXD	TXD +	RS485-A
G	NC	NC	RXD	TXD-	RS485-B

Ordering

SST3

For example, if order a dual-axis GPS inclinometer, with range $\pm 30^{\circ}$, accuracy $\pm 0.02^{\circ}$ at room temperature and $-20 \sim 60$ C, CAN2.0 output, 2 m cable, the model should be chosen as: SST302-30-G3-F1-00-C1-D3 (2m)
PC application software--- order number SST003-04-09
Magnetic base--- order number SST003-01-01

Accessories \& Options

Table 3 Accessories

Item	Order Code	Accessories name	Function
Output interface	00	RS232	Directly angle output Data format: Baud rate: 115200(adjustable), 8 data bits, 1 start bit, 1 stop bit, none parity Refresh rate: 5 Hz , optional: $10 \mathrm{~Hz}, 20 \mathrm{~Hz}$
	G1 G2	RS485 RS422	Isolated, Compatible with half-duplex or full-duplex communication; $\pm 15 \mathrm{kV}$ ESD protection Compatible with ANSI/TIA/EIA-485-A-98 \& ISO8482:1987(E) Comply with UL1577---2500V rms for 1 min ; Transmission rate up to 500 kbps , support max 256 pcs node High common mode transient suppression ability $>25 \mathrm{kV} / \mathrm{us}$; Support Modbus-RTU, sensor supply HEX or ASCII communication
	G3	CAN	Compliance with ISO/DIS 11898, twisted-pair output Support CAN2.0A, CAN2.0B protocol Build-in high-speed photo isolators Support 15 baud rates from 5 k to 1000 Kbps Transmission distance: 10km Max
	G12	WiFi	WLAN protocol: IEEE 802.11b/g, Compatible with Wi-Fi, 2.4G ISM band Output power: $15 \mathrm{dBm}+/-1.5 \mathrm{dBm}$ Wireless data transmission rate: $\begin{aligned} & 802.11 \mathrm{~b}: 1,2,5.5,11 \mathrm{Mbps} \\ & 802.11 \mathrm{~g}: 6,9,12,18,24,36,48,54 \mathrm{Mbps} \end{aligned}$ WLAN setting up:Support AP \& Ad-Hoc Encryption:Support WEP40 and WEP104 encryption (64/128 bit) Set-up network time: 3~6s
Temperature drift	D1	Temperature drift	Temperature compensation range $0 \sim 60^{\circ} \mathrm{C}$, accuracy $\pm 0.01^{\circ} @ \leq \pm 30^{\circ}$
	D2	Temperature drift	Temperature compensation range $0 \sim 60^{\circ} \mathrm{C}$, accuracy $\pm 0.01^{\circ} @> \pm 30^{\circ}$
	D3	Temperature drift	Temperature compensation range -20~60 ${ }^{\circ} \mathrm{C}$, accuracy $\pm 0.02^{\circ}$ @ $\leq \pm 30^{\circ}$
	D4	Temperature drift	Temperature compensation range -20~60 ${ }^{\circ} \mathrm{C}$, accuracy $\pm 0.02^{\circ} @> \pm 30^{\circ}$
	D5	Temperature drift	Temperature compensation range -30 $60^{\circ} \mathrm{C}$, accuracy $\pm 0.03^{\circ} @ \leq \pm 30^{\circ}$
	D6	Temperature drift	Temperature compensation range -30 $60^{\circ} \mathrm{C}$, accuracy $\pm 0.03^{\circ} @> \pm 30^{\circ}$
	D7	Temperature drift	Temperature compensation range -40 65 ${ }^{\circ} \mathrm{C}$, accuracy $\pm 0.05^{\circ}$ @ $\leq \pm 30^{\circ}$
	D8	Temperature drift	Temperature compensation range -40~65 ${ }^{\circ} \mathrm{C}$, accuracy $\pm 0.05^{\circ} \mathrm{Q}> \pm 30^{\circ}$
	D9	Temperature drift	Temperature compensation range -40~85 ${ }^{\circ} \mathrm{C}$, accuracy $\pm 0.05^{\circ}$ @ $\leq \pm 30^{\circ}$
	D10	Temperature drift	Temperature compensation range -40~85 ${ }^{\circ} \mathrm{C}$, accuracy $\pm 0.05^{\circ} @> \pm 30^{\circ}$
Cable/Plug	C1	Standard Cable with plug	Military class connector(meet MIL-C-26482) Standard 2M cable, IP67 protection, heavy duty up to 30 kg
	C6	Standard plug	According to MIL-C-26482, IP67 protection

Table 4 Options

Item	P/N	Option name	Function
Installation tools	SST003-01-01	Magnetic base	50kg suction, permanent magnet, stainless steel materials
Software	SST003-01-04 (Based on iPhone)	Adjustable base with micrometer screw	Three-points adjustment, resolution 0.001mm, stainless steel materials
	SST003-04-10-02 (Based on iPad)	SAngle mobile software	The communication distance with inclinometer $\geq 200 \mathrm{~m}$ By iPhone or iPad, can directly inspect the data, and do variety of settings, such as: zero, test range, sampling rate, filter coefficient, etc, and have more functions, including alarm, graph, compass chart, bubble chart Sampling rate: 20time/sec.
	SST003-04-09	PC application Software	Setting function, Command function, Tool function Operating platform: windows XP, Windows 7 More information please see datasheet of this options
	SST003-04-12-00	iss8 software	Collecting, preserving and monitoring data of 8pcs SST300 inclinometer max, can display each inclinometer data graph, parameters setting early warming and achieve multiple inclinometer networking Based on windows
	SST003-09-02	The portable rechargeable lithium battery packs	Output 24VDC, Continuous work 24 hours, IP65, rechargeable

